Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks.
نویسندگان
چکیده
Caco-2 cells are currently the most used in vitro tool for prediction of the potential oral absorption of new drugs. The existence of computational models based on this data may potentiate the early selection process of new drugs, but the current models are based on a limited number of cases or on a reduced molecular space. We present an artificial neural network based only on calculated molecular descriptors for modelling 296 in vitro Caco-2 apparent permeability (P(app)) drug values collected in the literature using also a pruning procedure for reducing the descriptors space. LogP(app) values were divided into a training group of 192 drugs for network optimization and a testing group of another 59 drugs for early stop and internal validation resulting in correlations of 0.843 and 0.702 and RMSE of 0.546 and 0.791 for the training and testing group, respectively. External validation was made with an additional group of 45 drugs with a correlation of 0.774 and RMSE of 0.601. The selected molecular descriptors encode information related to the lipophilicity, electronegativity, size, shape and flexibility characteristics of the molecules, which are related to drug absorption. This model may be a valuable tool for prediction and simulation in the drug development process, as it allows the in silico estimation of the in vitro Caco-2 apparent permeability.
منابع مشابه
Prediction of Pervious Concrete Permeability and Compressive Strength Using Artificial Neural Networks
Pervious concrete is a concrete mixture prepared from cement, aggregates, water, little or no fines, and in some cases admixtures. The hydrological property of pervious concrete is the primary reason for its reappearance in construction. Much research has been conducted on plain concrete, but little attention has been paid to porous concrete, particularly to the analytical prediction modeling o...
متن کاملPrediction the Return Fluctuations with Artificial Neural Networks' Approach
Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...
متن کاملPREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS
Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...
متن کاملPrediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks
The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...
متن کاملPrediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods
Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2010